memory. After this is done, the resulting configuration is said to use vertical 451
microprogramming.
As an example of how the number of outputs might be reduced, consider
that in some cases when one control signal is raised, ancther is always raised, and
so these two signals could be combined into a single signal.
In some cases different control signals are never turned on at the same time.
If N such signals can be found, then only M control lines, where 2" > N, will be
required, and a decoder can be used to provide the necessary control signals. For
instance, the ADD, SUB, RESET AC, and MB INTO BR signals are never turned .

on at the same time. Thus two control output lines with a four-output decoder VARIATIONS IN
could be used to generate these signals. MICROPROGRAMMING
CONFIGURATIONS

When vertical microprogramming is used, the system becomes less flexible,
since if a microprogram is to be changed or enlarged, fewer options in control
signal generation will be available. As a result most commercial computers are
arranged so they are somewhere between horizontal and vertical in their construc-
tion. (Many schemes have been used, and several are described in the Questions.)

Microprogramming is widely used in the new computer lines. Since the
instruction repertoire for the computer is effectively stored in the ROM, the in-
structions provided can be changed or added to by changing or adding to the ROM.

Further, microprogramming is useful in simulating one computer on another.
Suppose that we have a computer which has a basic set of registers and operations
between registers, and we have the ability to microprogram this computer. Further,
. we have a second computer with a certain set of instructions and a set of programs
written to run on this second computer. We now wish to make the first computer
run these programs and deliver the same results as the second computer would
have delivered. This is called simulation, and the first computer is said to simulate
the second computer. To do this, we microprogram the simulator computer so that
a given instruction has the same effect as the same instruction in the second ma-
chine.'°

As can be seen, a computer which is microprogrammed can be made to
simulate anather computer. Clearly some computers have architectures which are
much better suited for simulation.than others.

The microprograms provided by a manufacturer (or anyone else) to be used
on its microprogrammed computer are generally called firmware. The instructions
that a microprogrammed computer provides can be very complex and can be care-
fully designed to satisfy the programmer’s needs. The primary objections to mi-
croprogramming are (1) speed, because the logic gates used in a ‘‘conventional’’
computer will be faster than the ROM in most cases, and so the conventional
machine may run faster; (2) the gates can be minimized in number since the
instructions are to be fixed, and thus the total amount of equipment can often be
made smaller. (This is not always the case; however, ROMs are quite compact and
inexpensive so that the advantage of gates decreases a$ time passes.) As a result,
most large, fast ‘‘super’’ computers tend to use logic gates for control, while the
medium and smaller computers now tend to be microprogrammed.

!°This is often called emulation when microprogramming is used, it is necessary to rename registers
and arrange for other changes to really effect this, but the principle is essentially given here.

452

THE CONTROL UNIT

SUMMARY

9.11 The instruction word formats and instruction repertoires for two single-
address computers were discussed. A design for a single-accumulator computer’s
control section was then presented. This design is based on register operations
which can be described by using register transfer language. The most used general
procedures for control design and computer description were presented including
timing operation and the use of tables of operations to implement instructions.

When a computer is microprogrammed, a ROM is used to store the control
signals needed to sequence register operations. The preparation of the sequence of
operations to be performed by the computer is called microprogramming and is
often performed by using a register transfer language to describe these register
microoperations.

If each control signal has a bit in the ROM output word dedicated to it, the
microprogramming is said to be horizontal. When the size of the ROM is reduced
by encoding ROM outputs and then decoding them by gates, the microprogramming
is said to be vertical.

QUESTIONS

9.1 A single-address, one-instruction-per-word computer has a word length of
22 binary digits. The computer can perform 32 different instructions, and it has
three index registers. The inner memory is a 16,000-word magnetic core memory.
Draw a diagram of the computer word, allocating space for each patt of the basic
instruction word (OP-code part, address part, index register part). Do not use the
sign digit (leftmost digit) of the word.

9.2 Design a single stage of an accumulator and B register which will add and
shift left in one operation (step) or will simply shift left in one step. Use SHIFT
LEFT and ADD AND SHIFT LEFT as control signals, a full-adder, AND and OR
gates, and RS flip-flops.

9.3 Make out a timing table and modify the control circuitry in Fig. 9.6, in-
cluding the modification in Fig. 9.8, so that the machine has an unconditional
BRANCH instruction BRA, as well as a conditional BRANCH instruction BRM,
generating the necessary control signals.

9.4 Discuss how you would expand or perhaps improve the register transfer
language in Table 9.5. Do you think that microprogramming in a higher-level
language, such as Pascal or one of its variations, would yield an efficient micro-
program in the control memory? Discuss this.

9.5 Show how to modify Fig. 9.8 so that the BRM instruction becomes a BRP
instruction, meaning that the computer jumps or branches when the ACC is positive
instead of negative.

9.8 Show how to generate timing signals (such as Ty, T,, T,, and T; in Fig.
9.5) by using a shift register with the rightmost stages’ outputs connected to the
leftmost stages’ inputs. This is called a ring counter. In what states would you set
the flip-flops to start?

9.7 Why is the instruction counter always placed in the memory address register
at time T, during the execution part of an instruction in Table 9.2?

9.8 Explain why some instructions require both execution and instruction cycles
and others require only instruction cycles. Give examples of both kinds of
instruction.

9.9 Why can the SET W and AC INTO MB control signals be combined in
Fig. 9.6?

9.10 Why can the IC INTO MA, SET I, and CLEAR E control signals be
combined in Fig. 9.6?

9.11 Show how to add a pushbutton connected to a reset and start wire which
will (using DC SETs and DC RESETs on the flip-flops) cause the computer in Fig.
9.6 to start executing a program beginning at location 0 in the memory when it is
depressed.

9.12 Add a BRANCH ON ZERO instruction similar to that in Table 9.3 and
Fig. 9.8, except that the computer branches when the accumulator value is all*Os.

9.13 Add a SHIFT LEFT instruction to the example computer control, using a
technique as shown in Table 9.4 and Figs. 9.8 and 9.9.

9.14 When microprogramming is used to generate control signals and a ROM is
used, how can the instruction repertoire of the computer be changed?

9.15 In Fig. 9.10 the control signals could be loaded into D flip-flops and the
flip-flops” outputs used as the actual control signals. Give advantages and disad-
vantages of this arrangement.

9.16 Explain the difference between a microoperation and the control signal
which implements it.

9.17 To implement BRANCH or JUMP ON ACCUMULATOR NEGATIVE
instructions, another control signal C,; can be added which, when it is a 1, causes
a test of the sign bit of the accumulator and a jump in the control memory to a
section of microoperations which cause the desired change in the computer se-
quence of operations. Design this instruction.

9.18 In writing microprograms it is convenient to have an IF microoperation.
For instance, to write a microprogram to implement a branch instruction, we might
like an IF (AC, = 1) THEN C,_s— IAR ELSEIAR + 1—IAR microoperation.
This says if AC, is a 1, then place the current value of C, to Cg in IAR, which
means that the next microinstruction will be from the address given in Cg to C.
If AC, is a 0, the next microinstruction will be from the next location in the control
store. Write a microprogram for the branch-register-minus (BRM) instruction, us-
ing this microoperation.

9.19 Write a microprogram for a BRP (branch or positive) instruction, using the
information in Question 9.18.

8.20 Show how to implement the instruction in Question 9.19.

9.21 Write a microprogram for a SHIFT RIGHT instruction, using the IF type
of statement just described. (You will also need a counter.)

QUESTIONS

THE CONTROL UNIT

9.22 Show how to implement the microprogram in Question 9.21.

9.23 Write a microprogram to implement a multiplication instruction.

9.24 Show how to implement the multiplication instruction in Question 9.23.
9.25 Write a microprogram to implement a DIVIDE instruction.

9.26 Show how to implement your DIVIDE instruction from Question 9.25.
9.27 Reduce the number of control signals used in Fig. 9.11.

9.28 Explain what features you might like in a computer, which is to be micro-
programmed to simulate several other computers.

9.29 Discuss some of the advantages and disadvantages of microprogramming.

9.30 Some computers now use a branch or jump scheme where status bits stored
in flip-flops are continually being set during arithmetic and logic operations. For
instance, status bits Z and N are commonly used to indicate if the result of an
operation is ‘‘all zero’’ or ‘‘negative.”” Show how to add such status bits to the
arithmetic section of the computer shown in Fig. 9.6.

9.31 When status bits are used, jump instructions are of the form ““jump on
zero,”’ meaning jump if the Z flip-flop is a 1, or *‘jump negative,”’ meaning jump
if the N flip-flop is a 1. Design these two instructions, using the Z and N circuitry
from Question 9.30.

9.32 Discuss the advantages and disadvantages of random logic (gate-generated
logic) versus microprogramming for a computer control section. Assume that the
computer is a minicomputer.

9.33 Compare the microprogramming and conventional random logic techniques
for generating the control signals in a general-purpose digital computer. Assume
that the computer is to be sold in a large market where both business and scientific
programs are to be run. Give the advantages and disadvantages of both techniques
for implementing control logic. '

9.34 The control of a single-address small computer normally passes through
two major phases in executing an instruction which fetches a single operand from
memory (an ADD or SUBTRACT instruction, for example). We call these the
instruction cycle and the execution cycle. In order for control to know which phase
or cycle it is in, a conventional random logic control unit uses an E flip-flop and
an [flip-flop.

(@) Why are two flip-flops used instead of one?

(b) Why does a microprogrammed version of the same computer not require
an E and an / flip-flop?

9.35 Write the transfer in Table 9.3 in register transfer language. Write the
transfers for a SUBTRACT instruction (as in Table 9.2) in register transfer lan-
guage.

9.36 Write a register transfer statement to transfer every other bit (starting with
bit X;) from a register X with 10 flip-flops into a register ¥ with 5 flip-flops.

-CURPUTER JRGANZATION

Computers are available in a wide range of sizes and capabilities. The smallest
computers are called microcomputers, the next largest are minicomputers, followed
by small, medium-sized, and finally the large, super, or ‘‘maxi’’ computers. The
prices range from a few dollars (for a chip set for a microcomputer) to several
million dollars. Speeds are from microseconds per instruction to hundreds of in-
structions per microsecond.

A microcomputer generally consists of several integrated-circuit (IC) chips,
including a central processing unit (CPU) chip (or chips), called a microprocessor
chip (or chips); several memory chips; and one or more input-output interface chips.
These sets of chips can be quite inexpensive (a few dollars in large quantities) or
fairly expensive (several hundred dollars for high-speed chip sets). Hand calculators
are often assembled from IC chips including one of the lower-priced microprocessor
chips. Personal computers also use microcomputer chip sets.

Microprocessor chips also are widely used in so-called original equipment
manufacturer (OEM) devices or systems. Traffic lights, printers, communications
controllers, automatically controlled instrument complexes, cash registers, and au-
tomatic checkout facilities in grocery and department stores, for example, all make
wide use of microprocessors.

Similarly, minicomputers, which generally have prices from a thousand to
tens of thousands of dollars (including memory and input-output devices), are
widely used in control systems and OEM systems as well as in scientific applica-
tions and business data processing for small businesses, schools, laboratories, etc.
The minicomputer preceded the microcomputer, and it continues to be widely used

COMPUTER
ORGANIZATION

since computers in this price range provide many users with enough additional
capabilities to warrant the extra cost.

The small- and medium-scale computer market finds applications in busi-
nesses and laboratories of all kinds as well as in hospitals, warehouses, small banks,
etc. The largest computers are to be found in large corporations such as insurance
companies, banks, scientific laboratories, and universities. These *‘super’’ com-
puters range from scientific application oriented ‘‘number crunchers’’ to large com-
plexes of input-output devices and memories used in businesses where emphasis
is on maintaining large files of data, producing management reports, billing, au-
tomatic ordering, inventory control, etc. '

The characteristics of these different kinds of computers differ considerably
from category to category and from design to design. Computers for business data
processing have different system features than those for scientific work. There is
also considerable variation in opinion as to how computers for the same application
area should be configured, which leads to differing computer designs. The general
subject of how computers should be configured and what features should be in-
cluded is called computer architecture.

The subject of computer architecture ranges through almost every aspect of
computer organization. Included are the lengths of the instruction words, whether
the length is variable or there are several different lengths, and how many addresses
in memory are referenced by an instruction word. Other architectural considerations
concern the number of bits in each memory word, whether instructions and data
words are of the same size as the memory words, whether numbers are handled in
1s or 2s complement form or in BCD or some combination of these. What are the
instructions provided, how are the memories organized, and how are input-output
devices interfaced? As can be seen, computer architecture is a large and rich subject
which deals with most aspects of computer design and organization and interacts
with every aspect of the computer.

OBJECTIVES

1 The addressing techniques used in computers are explained, and examples
from existing computers used to illustrate these techniques.

2 Good programming practice calls for breaking programs into subprograms.
A single subprogram can be used several times in an overall program. Computer
instruction repertoires have special instructions to go to and return from subpro-
grams, and these are described along with how they work.

3 Interrupts from I/O devices are handled differently by various computers.
The general principles involved are discussed, and examples from computers
presented.

4 The architectures and instruction repertoires for several present-day com-
puters are described. Examples of sections of programs for these computers and
explanations for their operation are included.

INSTRUCTION WORD FORMATS—NUMBER OF ADDRESSES 487

10.1 A given computer has one or more basic formats for its instruction words.
We have emphasized the single-address instruction word, which is popular for
microcomputers. There are also several other formats in use.

Two-address instructions

The number of divisions in the basic computer instruction word is determined
primarily by the number of addresses which are referred to. The single-address INSTRUCTION WORD
instruction has been covered. Many computers, however, have two-address instruc- FORMATS—NUMBER
tion words with three sections (Fig. 10.1), the first consisting of the OP code and OF ADDRESSES
the second and third sections each containing the address of a location in the
memory.
Different computers use these addresses differently. Generally, both ad-
dresses in a two-address machine specify operands, and the result is stored at the
first address.' The Minneapolis-Honeywell 200 and the IBM 370 and 1801 series
have two-address instructions that provide examples in which each address refers
to an operand in the memory.
In many computers, instead of a single accumulator, there are two or more
registers which are called either multiple accumulators or general-purpose regis-
ters. An instruction word will have the-first address section (the ‘‘address of op-
erand A’ section in Fig. 10.1) tell which general register contains one of the
operands. The second address section of the instruction word will then give the
address in memory of the second operand. If only two accumulators or general
registers are provided, only 1 bit is needed for the address section; if 16 general
registers are used, then 4 bits will be needed for the first address. Results are
generally stored in the general register (accumulator) specified by the first address.
In some computers instruction words are provided in which each of the two
addresses refers to general registers. Thus, for instance, in a computer with 16
general registers, an instruction word would consist of the OP code plus two 4-bit
address sections.

'In several computers the result of the calculation is stored at the second of the two addresses.
FIGURE 10.1

Formats for instruc-
tions.

Single address instruction

B
|

Two address instruction

COMPUTER
ORGANIZATION

FIGURE 10.2

Two-address instruction words in which one or both addresses refer to general
registers are shorter than two-address instruction words where both addresses refer
to the memory, and this format is popular in microcomputers and minicomputers.

Zero-address instructions—stacks

There is a type of instruction word that does not specify any location in memory
for an operand, but which relies on what is called a stack to provide operands.
Basically a stack is a set of consecutive locations in a memory into which operands
can be placed. The name stack is derived from the fact that the memory is organized
like a stack of plates in a cafeteria. (Each operand can be thought of as a plate.)
The first operand placed on the stack is said to be at the bortom of the stack. Placing
an operand on the stack is called pushing, and removing an operand is called
popping the operand. The operand most recently placed on the stack is said to be
on the top of the stack. Only this top operand is immediately available.

If we push operands A, B, and C onto an empty stack and then pop an
operand, C will be removed. If we push A, B, and C in order and then pop three
operands, first C will be popped, then B, and finally A. (This last-in first-out
principle leads to stacks sometimes being called LIFO lists.)

Figure 10.2 shows the operation of a stack. Stacks are generally maintained
as a set of words in a memory. Each word therefore has a fixed length (number of
bits) and an address. The szack pointer is a register that contains the address of the
top operand in the stack. The stack pointer is incremented or decremented when
an operand is pushed or popped.

If an ADD instruction is given to a computer using a stack architecture, the
top two operands in the stack will be removed; added and then the sum is placed
on the top of the stack. Similarly, a MULTIPLY instruction would cause the top
two operands to be multiplied and the product placed on the stack.

Since only the OP-code section of an arithmetic instruction need be given to
specify an arithmetic operation, these instruction words can be very short. It is stiil

Stack operations.

The item
popped
Pointer Pointer \ Pointer

i

The item pushed
wasa ‘“‘P"”

Top of stack Top of stazk

Bottom

of stack Bottom of stack

Bottom of stack

Stack “Popping’’ an “Pushing’’ an
item from the item onto the
stack stack

Note: In this case each item in the stack is a single character. The stack items could be
numbers, words, records, etc. The pointer contains the address of the ““top of the stack.”

necessary, however, to move operands from memory onto the stack and from the
stack back into the memory, and the instruction words for this will be longer since
memory addresses must be specified. (These instruction words will be like single-
address instruction words, except that the operands are moved to and from the
stack instead of to and from the accumulator.)

The advocates of stacked computer architecture have some convincing ar-
guments, but problems do exist. Stacked computers include the Burroughs 5500
and 1700 and the Hewlett-Packard 3000. Stacks are widely used in other sections
of computers we show.

REPRESENTATION OF INSTRUCTIONS AND DATA

10.2 Important features of a computer’s architecture concern the number of bits
in instruction words, the size of memory words, and the way data are represented
in the computer. In most early computers and in some present-day computers, the
high-speed memory contains the same number of bits at each address (in each
location) as the instruction words. Similarly, numbers are represented by using the
same number of bits. This makes for straightforward implementation. An example
of a computer with this structure can be found in the 6100, which has a 12-bit/word
memory, 12-bit instruction words with a 3-bit OP code, and numbers represented
by using a 12-bit signed 2s complement number system. Most of the large scientific
number-crunching machines also use this structure, and CDC produces a number
of 64-bit/word large computers with this basic structure as well as some smaller
24-bit/word computers. CRAY also makes computers of this type.

There is a desire to be efficient with the length of instruction words. Also,
business data processing involves much manipulation involving character strings
(names, addresses, text, etc.). The desire to create computer architectures that
conserve on instruction word length and also permit storing of strings of characters
of arbitrary length efficiently has led to a number of computer architectures with
(1) only 8 bits at each address in memory, so a single alphanumeric character can
be stored at each address, and (2) instruction words with variable lengths (each
word length is some multiple of 8 bits).

As a result, most small computers now have memory words of 8 bits per
word. Instruction words are then of variable length with each being some multiple
of 8 bits. Data words are also multiples of 8 bits with many microprocessors having
8-, 16-, and 32-bit words.

ADDRESSING TECHNIQUES

10.3 When an address in memory is given in an instruction word, the most
obvious technique is simply to give the address in binary form. This is called direct
addressing, and the instruction words in the examples in Chap. 9 all use direct
addressing.

Although direct addressing provides the most straightforward (and fastest)
way to give a memory address, several other techniques are also used. These
techniques are generally motivated by one of the following considerations:

459

ADDRESSING
TECHNIQUES

COMPUTER
ORGANIZATION

1 Desire to shorten address section For instance, if we have a computer with
a 256K memory, 18 bits will be required for each direct address, some addressing
techniques are used to reduce this number.

2 Programmer convenience Several addressing techniques (such as index reg-
isters, which are described) provide a convenience to the programmer in writing
programs.

3 System operation facilities In many computer systems, the computer will
have several different programs in memory at a given time and will alternate the
running of these programs. To efficiently load and remove these programs from
memory in differing locations, addressing techniques are provided which make the
program relocatable, meaning that the same program can be run in many different
sections of memory. The operating systems in microcomputers use this facility.

The following sections describe the basic addressing techniques now in use:
direct addressing, immediate addressing, paging, relative addressing, indirect ad-
dressing, and indexed addressing. Examples of these techniques are given for actual
computers and enough are given so the principle can be clearly understood. Know-
ing how real computers use these techniques is important.

DIRECT ADDRESSING

10.4 Simply giving the complete binary address in memory is the most direct
way to locate an operand or to give an addréss to jump to. As a result, most
computers have some form of direct addressing. The following examples are for
computers that will also be used in the sections on more complex addressing
strategies.

Example

The 8080 microprocessor has a single 8-bit accumulator. The 8080’s memory is
organized into words of 8 bits each which are called byres. An OP code for this
microprocessor occupies 8 bits, or 1 byte, an entire memory location. The address
bits are then located in the following memory locations. Since 2'® words can be
used in a memory, 2 bytes are required for a direct address. As a result, a direct-
address instruction requires 3 bytes in memory—one for the OP code and two for
the direct address.

In executing an instruction, the 8080 CPU? always obtains the OP code from
memory first, and this tells how many bytes are required for the address. The 8080
CPU then reads the necessary bytes from memory and assembles a complete in-
struction word in its registers, which it then proceeds to execute.

A typical direct-access instruction in the 8080 is the LDA (load accumulator)
instruction with OP code 00111010 (3A hexadecimal). This OP code is followed

*The 8080 CPU is constructed on a single chip. This chip, which is sometimes called the 8080 micro-
processor chip, interprets and executes instructions. Memory is on separate chips, as are input-output
interface circuits.

by 2 bytes giving the address in memory of the 8-bit word to be loaded into the
accumulator. The low-order (least significant) bits of the address are given in the
first byte of the address and the high-order bits in the second byte.

Assume that the memory contains these values:

ADDRESS CONTENTS
(HEXADECIMAL) (HEXADECIMAL)
0245 3A

0246 49

0247 03

0349 23

The 3 bytes in locations 245, 246, and 247 contain a single LDA instruction which,
when executed, will cause the value 23,4 to be transferred into the accumulator of
the 8080 microprocessor.

Example

The 6800 microprocessor has two 8-bit accumulators which are referred to as
accumulator A and accumulator B. The microprocessor has 8 bits per memory
word. The OP code of an instruction occupies 8 bits and therefore a complete
memory word. The address bits for an instruction word are in the memory loca-
tion(s) following the OP code. The memory can be up to 2'¢ locations in size. As
an example of direct addressing, the OP code for ADDA, which causes the contents
of the address referenced to be added to and then stored in accumulator A, is BB
(hexadecimal), or 10111011 (binary). If the microprocessor reads this OP code, it
knows that the address is given in the following 16 bits. As a result, if the 6800
CPU reads an OP code of BB, it then reads the next 2 bytes in memory to obtain
the address. The microprocessor reads from this address and performs the required
addition. The next OP code is read from the memory location following the two
locations that contained the address.> .

The OP code for an ADDB instruction, which causes the number stored in
the memory location referenced by the next 16 bits to be added to accumulator B,
is FB (hexadecimal). Now examine Fig. 10.3. If the microprocessor reads the two
instruction words shown, it will cause addition into first accumulator A, then ac-
cumulator B, and will take the next instruction word from location 17 in the
memory.

In the 6800 microprocessor, instruction words can have addresses with 1 byte
or 2 bytes, as will be seen. [Some instructions have only ‘‘implied addresses’’ (no
address bits); HALT is such an instruction.] The microprocessor must therefore
read the OP code before it can determine how many more locations from the
memory need to be read to form the instruction word.

One note is necessary here. The 6800 microprocessor also has instructions
with only 8-bit addresses. In this case an address has only 8 bits, and thus only

3Notice that the 6800 places the most significant bits in the address in the second byte and the least
significant bits in the third byte. (The 8080 does the reverse.)

DIRECT ADDRESSING

462

COMPUTER
ORGANIZATION

FIGURE 10.3

6800 microprocessor

instruction execution.

ADDA OP code is BB for direct addressing
ADDB OP code is FB for direct addressing

Memory
Address contents
1 <+—— 0P code (Low order
12 bits come
T 13 } Address part first)

/ 14 <—— OP code
15

16

17

} Address part

<+——OP code for next instruction

This instruction word says “‘add the word located at address
0001011000001111 in memory to the contents of accumulator A.”

This instruction word says “‘add the word located at address
0010001110100010 to accumulator B.”

the first 256 bytes in the memory can be referenced. As an example, an instruction
to add the number at the location given in the following 8 bits to accumulator A
has OP code 9B. An instruction to add to accumulator B the number at the location
given in the following byte has OP code DB. The OP code tells whether a complete
16-bit address or an 8-bit address is to be read from the memory. (In its manuals
Motorola calls the 8-bit address instruction words direct-addressing instructions
and the 16-bit address instructiqn words extended direct-addressing instructions.)
The 16-bit addresses have been used to illustrate the direct-addressing technique
because they are more natural and all the memory can be reached.

Example

The PDP-11 is a DEC minicomputer and microcomputer series with sizes ranging
from small to large. A particular size is designated by the model number, so that
a PDP-11/05 is a small computer, the PDP-11/45 is a medium-sized machine, and
the PDP-11/70 is a fairly large system. This series of computers is typical of what
is offered by DEC and other manufacturers.

The PDP-11 has eight 16-bit general registers (accumulators). It is common
practice to name these general registers R, to R, and we follow this practice.

The PDP-11 memory is organized into 8-bit words, so 1 byte is in each
memory location. The PDP-11 has a number of addressing modes and, as a result,
a fairly complex instruction word format.

A typical direct-address instruction in the PDP-11 involves adding the num-
bers in two general registers and storing the sum in one of the registers. The
instruction word to do this has three sections: the OP code, the source address,
and the destination address. (In an ADD, the number in the source register is added

to that in the destination register, and the sum is placed in the destination register.)
Since the source and destination are each general registers and there are eight
general registers, 3 bits are required to give each address. However, since the PDP-
11 has a number of addressing modes, 3 extra bits are included in each of the
source and destination addresses to tell which addressing mode is to be used. The
instruction word format is as follows:

OP code Source Déstination
address address
15 12 11 6 5 0

The first (leftmost) 3 bits in the source and destination addresses give the
mode, and for direct addressing these will be all Os. The next 3 bits give the register
number. The OP code for ADD in the PDP-11 is 0110, and so the instruction word
which will add register 3 to register 5 and store the sum in register 5 is

0110 000011 000101

Another example of direct addressing is the increment instruction, which
simply adds 1 to a selected general register. The instruction word to accomplish
this has two sections: an OP code and an address section. The address section has
3 bits to tell the mode and 3 bits to designate the register. The OP code for an
INC (increment) instruction is 0000101010. Thus an instruction that will increment
general register 5 is

0000101010 000101

OP code address part

Notice that this OP code is larger than the ADD OP code, because only one
operand is required here. (The first 4 bits are not duplicated in any of these larger
OP codes; they tell the class of operation.)

IMMEDIATE ADDRESSING

10.5 A straightforward way to obtain an operand is simply to have it follow the
instruction word in memory. Suppose that we want to add the number 7 to the
accumulator in a single accumulator computer, and suppose that the memory is
organized in 8-bit bytes. A direct way to cause this addition would be to have an
8-bit OP code which says to ADD and that the augend follows ‘‘immediately’’ in
memory (the next byte). The computer would then read the OP code, get the byte
to be added from memory (which would contain 7), add it into the accumulator,
and take the next instruction word’s OP code from the byte following the byte
containing the augend. This is essentially how the 8080 (and 6800) computers
operate.

IMMEDIATE
ADDRESSING

§

COMPUTER
ORGANIZATIO

In general, immediate addressing simply means that an operand immediately
follows the instruction word in memory.

Example

For the 8080 microprocessor, the instruction ADI (add immediate) has OP code
11000110 and tells the CPU to take the byte following this OP code and add it
into the accumulator. Consider the following:

ADDRESS CONTENTS
16, 11000110

174 00001100

When the computer reaches address 16,5 in memory, it reads the OP code,
sees that this instruction is an ADI instruction, takes the next byte from the memory
which is 00001100, adds this into the accumulator, and takes the next OP code
from location 18,4 in memory.

Example

The 6800 microcomputer has two accumulators, and so the OP code must tell
which accumulator to use. The instruction ANDA with OP code 84, will cause
the byte following the OP code to be ANDed bit by bit with accumulator A, while
the instruction ANDB with OP code C4,, will cause the byte following the OP
code to be ANDed bit by bit with accumulator B.

Suppose that accumulator A contains 01100111 and accumulator B 10011101.
Then consider this in memory:

ADDRESS CONTENTS
1056 10000100
kP 11010101
12,6 11000100
13,6 10100101
14, ...

The 6800 will read the ANDA at location 10, and AND the next byte with
accumulator A, giving 01000101, which will be placed in accumulator A. It will
then read the ANDB in location 12,4, AND the next byte with B to give 10000101,
place this in accumulator B, and read the next OP code for an instruction from
location 14 4.

Example

The PDP-11 has eight accumulators and so must tell which accumulator to use
when an addition instruction uses immediate addressing. The OP code for ADD is
0110, and an instruction word for an immediate add looks like this:

0110 01011t 000011

OP code source destination

The source bits say that the add is an immediate add and that the augend is
in the 2 bytes (since the accumulators have 16 bits) following this word. The
destination section here refers to general register 3, so the next 16 bits will be
added into general register 3. (Placing 101 in the rightmost bits instead of 011 will
cause an addition into general register 5, etc.)

Now consider that general register 4 contains 0000614, and the memory is
as follows (all these numbers are in octal, which is DEC’s practice):

ADDRESS CONTENTS
1020-1021 062704

1022-1023 000012

Execution of these by the CPU will result in 12, being added into general register
4, giving 73; in that register.

Notice in the PDP-11 that the ADD instruction OP code is the same for
immediate and for direct addressing. It is the first 3 bits in the source and destination
address sections that tell the addressing mode, not the OP code.

PAGING

10.6 Microcomputers and minicomputers sometimes alleviate the problem of
addressing a large memory with a short word by using a technique that actually
arose in a large computer called Atlas. This technique is called paging. When
paging is used, the memory is divided into pages, each of a fixed length. An
instruction word then designates a page and a location on that page.

For the 6100 microprocessor mentioned in Chap. 9, the basic memory of 4096
words of 12 bits each is divided into 32 pages of 128 words each. Thus page 0
contains the memory locations from 0 to 127 (decimal), page 1 refers to the memory
locations from 128 to 255, . . . , and finally page 31 refers to the locations from
3968 to 4095, as shown in Fig. 10.4. Then 5 bits are required to reference a page,
and 7 bits to reference a location within a page.

The addressing of data in a computer with paging varies from computer to
computer. Generally the address given in the instruction word can refer either to
the page in which the instruction word lies or possibly to some other particular
page previously specified.

PAGING

466

COMPUTER
ORGANIZATION

FIGURE 10.4

- ~
= -
o o ()

Addresses

000000000000
000000000001

000001111111
000010000000

coo0011111111

10000000

11
1110000001

111111111111

Layout of 32-page
memory with 4096
words of 12 bits.

Example

For the 6100 the seventh bit in a 12-bit instruction word is called the page bit.
This bit tells whether the 7-bit address in the instruction word refers to the page
in which the instruction lies (in which case the bit is a 1) or to the first page in the
memory (in which case the bit is a 0).

Figure 10.5 shows the page bit in the instruction word for the 6100. If this
bit is a 0 in a TAD (2s complement ADD) (or other) instruction, the address given
by bits 6 to 0 refers to an address on page O (see Fig. 10.4). Therefore the instruc-
tion word 001000001110 refers to location 144 in memory, regardless of where in
memory the instruction is placed. (The first 3 bits are 001, the OP code for TAD.)

If the instruction word has a 1 in the page bit position and if the final bits
give the number 144, then the address to be used is the 154th address on the page
in which the instruction lies. This is shown in Fig. 10.5 where the instruction word
001010001100, when located at address 000100110000 in memory, points to lo-
cation 000100001100 in memory; and the augend for the TAD would be fetched
from that address.

Paging shortens the length of the address part. For the 6100, a 4096-word
memory, which would require 12 address bits if a direct address were used, is
addressed by using a page bit and 8 more bits. Some addresses are not reachable
from a given instruction word, however. To reach addresses not on page 0 or the
page containing the instruction word, a technique called indirect addressing is used,
as will be shown.

RELATIVE ADDRESSING

10.7 Relative addressing is quite similar to paging, except that the address
referred to is relative to the instruction word. In general, when relative addressing
is used, the address part of the instruction word gives a number to be added to the

Page o
bit Beginning
of page
—0 4004
will 4144
00144 use
this :
address ~—460g | B TAD 14;
Wwill
use 00177¢

this
address 2004

Page 1

— Instruction is

B TAD 14,

377,

RELATIVE
ADDRESSING

FIGURE 10.5

address following the instruction word. Thus in relative addressing, the address
section contains a displacement from the instruction word’s location in the memory.
Giving only a displacement reduces the number of address bits but makes only a
part of the memory available. For instance, if the instruction word uses relative
addressing and the address part contains 8 bits, then only 256 memory locations
are available to a given instruction.

Relative addressing is best explained by using examples.

Example

The 6800 microprocessor can have up to 2'® memory words. So 16 bits are required
to address the entire memory in a direct mode. When relative addressing is used,
this address is reduced to an 8-bit displacement, shortening the instruction word.

In the 6800 a relative-address instruction word contains only the OP code
and an 8-bit address, so only two locations in memory (bytes) are required. (The
OP code telis what kind of addressing to use.) When the addressing is relative, the
address in the second byte of the instruction is added to the address at which the
OP code lies plus 2. The address in the second byte is considered as a signed 2s
complement number, however, so the address referenced can be at a higher or
lower address in memory than the instruction word. In fact, the address can be
from — 125 to + 129 memory words from the address of the OP code.

Figure 10.6 shows this. The OP code for a BRA (branch) instruction with
relative addressing is 20 (hexadecimal). The microprocessor would read the OP
code at location 10, see that it is a BRA instruction, get 00000101 from the next
memory location, add this 5 (decimal) to 2 plus 10 (where the OP code lies), giving
17. The next OP code would then come from location 17. In Fig. 10.6 this OP

Paging examples.

COMPUTER
ORGANIZATION

- FIGURE 10.6

Memory

Address Contents BRA Address part
00100000 00000101
10 OP code
1 Address part This says jump to the address
12 at which the instruction word
13 lies+ 5+ 2
14
15
:g‘ OP cod BRA Address part
code N ~
18 Address part 00100000 11111001

This says jump to the address
at which the instruction word
lies+2-7

Relative addressing
in 6800 micro-
processor.

code is again BRA, and location 18 contains 11111001, which is —7 decimal.
Since 17 + 2 — 7 = 12, the next OP code would come from location 12.

Example

In the PDP-11, a relative addressing mode can be used for the INC (increment)
instruction. The OP code for INC in the PDP-11 is 00524, and 274 in the address
part indicates a relative addressing mode.

Assume that we have the following situation in memory:

ADDRESS CONTENTS
(OCTAL) (OCTAL)
1020 005627
1022 000012

1024

The relative addressing feature operates as follows. The displacement, 12
in this example, is added to the address following the instruction word, in this case
1024. This gives 1036, and so the number at location 1036 in memory would be
incremented.’

INDIRECT ADDRESSING

10.8 Another widely used variation in addressing is called indirect addressing.
Indirect addressing causes the instruction word to give the address, not of the
operand to be used, but of the address of the operand. For example, if we write
ADD 302 and the instruction is a conventional direct-addressing addition instruc-
tion, the number at location 302 will be added=to the word currently in the accu-
mulator.

If the addition instruction is indirectly addressed and we write IAD 302
(indirect add), then the number stored at address 302 will give the address of the

operand to be used. As an example, when the instruction word at address 5 in the
memory in the following program is performed, it will cause the number 164 to
be added to the current contents of the accumulator.

MEMORY ADDRESS CONTENTS
5 IAD 302

302 495

495 164

Example

The 6100 has a 12-bit instruction word, as shown in Fig. 10.7. The instruction
word contains a 3-bit OP code, a page bit, an indirect bit, and a 7-bit unsigned
binary number. The page bit has been explained. There is also an indirect bit. A
0 in the indirect bit says, ‘‘This is not an indirect address.’” However, a | in the
indirect bit indicates the address referenced is indirect.

As an example refer to Fig. 10.7. The TAD instruction with OP code 001 is
used again. The figure shows a case in which the instruction word is TAD with
the page bit a 0, so the address is on page O in the memory, and the indirect bit
is a 1. Since the 7 address bits point to location 62, that location contains the
address of the operand. Again, referring to the figure, at location 624 we find a
34328, and it is this location, at which the operand 3255, is located, that is added
to the accumulator.

Notice that the entire 4096-word memory is accessible to an instruction word
through the use of indirect addressing because each memory word contains 12 bits.
Placing an address on page 0 where it can be reached from anywhere in *~- <emory
makes that address always available in programming.

469

INDIRECT
ADDRESSING

FIGURE 10.7

Indirect bit ——
Page bit
0
344 TAD F 62
62 34324

-

Operand
34324 «—— used in
addition

Indirect addressing in
6100 microprocessor.

470

COMPUTER
ORGANIZATION

Example

In the 8080 microprocessor there are several registers in the CPU in addition to
the accumulator. These are called scratchpad registers and may be used in several
types of instructions. The scratchpad registers are named B, C, D, F, H, and L.
The registers are each 8 bits in length. Sometimes they can be handled in pairs
with a resultant length of 16 bits, thus forming a complete address. Then an
indirect-address mode can be used where the number in the register pair points tc
the address where the operand lies.

For example, in the 8080 there is a MOV (move) instruction which moves
an 8-bit word from the memory into a designated register. The format for this
instruction word is as follows:

OP destination source

0IDDDI110

The DDD section here is 3 bits,* which simply call out the register into which the
8-bit word from memory is to be moved. The accumulator has number 111, register
B has number 000, scratchpad register C has number 001, etc. The location in the
memory from which the word to be moved is taken is always given by the register
pair H, L. Thus if register pair H, L contains 45A2 4 (H contains 45, L contains
A2), then the address in memory used will be 45A2.

If the instruction word is 01111110 and register pair H, L contains 3742,
then the word at location 3742, will be moved into the accumulator. If the instruc-
tion word is 01001110 and the H, L pair contains 23794, then the word at location
2379,¢ in memory will be moved into scratchpad register C.

Moving an address into the H, L registers in the CPU makes the word at that
address available to an instruction word through the use of indirect addressing.
Complete details and how to load the H, L pair are given in Sec. 10.11.

INDEXED ADDRESSING

10.9 There is a variation on conventional direct memory addressing which fa-
cilitates programming, particularly the programming of sequences of instructions
that are to be repeated many times on sets of data distributed throughout the
machine. This technique is called indexing.

Indexing was first used in a computer developed at the University of Man-
chester. A register named the B box was added to the control section.’ The contents
of the B box could be added to the contents of the memory address register when
desired. When the B box was used, the address of the operand located in memory
would be at the address written by the programmer plus the contents of the B box.
The U.S. term for B box is index register, and we use this term. Index registers
are so useful that computers sometimes provide several.

“Each D stands for a single destination bit that can be either a 0 or a 1.
5The idea was so useful that several B boxes were later used.

Use of index registers eases writing programs that process data in tables,
such as those described in Chap. 1, greatly reducing the number of instructions
required in an iterative program. The index registers permit the automatic modi-
fication of the addresses referred to without altering the instructions stored in memory.

When index registers are included in a computer, a section of the instruction
word tells the computer whether an index register is to be used and, if so, which
one. So the basic instruction word is broken, for a single-address computer, into
three parts instead of two. A typical division is shown in Fig. 10.8.

Generally two additional instructions are also added. One is used to load the
index register, and the other modifies the number stored in the specified index
register or causes the computer to branch.

If an index register is not to be used, the programmer places Os in the index
register designation section of the word. If there are three index registers, there
will be two binary digits in the index register section of the word, and the index
register desired can be selected by placing the correct digits in the index register
designation section.

To describe the operation of the index registers, two instructions are intro-
duced. We designate one of these by the mnemonic code SIR (set index registers),
and this instruction will cause the address section of the instruction word to be
transferred into the index register designated by the index register designation bits
in the word. For instance, 01 SIR 300 will load the number 300 into index register
01. Since the address section normally contains the address section of the computer
word, all that is required is that the contents of the address register be transferred
into the index register designated.

We designate the second instruction with the mnemonic code BRI (branch
on index). This instruction will cause the contents of the index register designated
to be decreased by 1 if the number stored in the index register is positive. At the
same time, the computer will branch to the address in the address section of the
instruction word, taking its next instruction from that address. If the index register
designated contains a 0, the computer will not branch but instead will perform the
next instruction in normal order.

The index registers may be used during any normal instruction by simply
placing the digits indicating the index register to be used in the index register
designation section of the computer word. For instance, if index register 01 contains
300 and we write a CAD (clear and add) instruction

01 CAD 200

then the computer will add the contents of index register 01 to the contents of the
address section, and the address used will be the total of these two. Since index

\ - gL : v JL' v J
Index- Operation Address of
register code operand
designation

471

INDEXED
ADDRESSING

FIGURE 10.8

Index register instruc-
tion word.

TABLE 10.1

ADDRESS IN
MEMORY

INSTRUCTION WORD

INDEX REGISTER opP ADDRESS
DESIGNATION CODE SECTION COMMENTS

0

B WA o

5
20110300
301

01

Tne

472

register 01 contains 300 and the address section contains 200, the address from
which the operand will be taken will be address 500 in memory.

An example of the use of an index register may be found in the short program
shown in Table 10.1, which will add all the numbers stored in memory addresses
201 to 300 and store the sum in address 301.

The program repeats the instructions at addresses 1 to 4 until index register
01 is finally at 0. Then the computer does not branch and is halted by the next
instruction.

The 6800 microprocessor mentioned before has a single 16-bit index register. For
the ADDA instruction, when indexing is used, the OP code is AB (hexadecimal).
This instruction has only one 8-bit address part, so an entire instruction word
requires only 16 bits (two memory locations).

Figure 10.9 shows an example for the 6800 microprocessor, The instruction
word is at locations 68 and 69 in memory and is an indexed ADDA instruction.
The 8-bit address part contains 14 (hexadecimal), and the index register in the CPU
contains 0102. This results in the number at location 116 in memory being added
into accumulator A,

The 6800 has instructions to load, increment, or decrement the index register,
and these are covered in Sec. 10.12.

SINGLE-ADDRESS COMPUTER ORGANIZATION

10.10 A straightforward example of a single-address computer is the Harris
6100, which is widely used in word processors and also personal computers and
1/0O device interfaces. This computer is used to point out some basic principles in
computer architecture.

Memory Index register

=0102 (hex)

68
69

OP code

Address part

0116 Instruction word is AB14 (hex)

The index register contains 0102
so the number used in the addition
will be at 0102 + 14 = 0116 (hex)
in memory

FIGURE 10.9

The basic organization of the 6100 is shown in Fig. 10.10. It has a [2-bit
instruction word as shown in Fig. 10.11. The memory is also organized in 12-bit
words, and a basic memory block consists of 2'> = 4096 words. Since the instruc-
tion word is very short, the designers have allowed only 3 bits for the OP-code
part; thus, as shown in Fig.10.11, there are only eight basic classes of instruction
words.

Several of the basic instructions are very straightforward. For instance, the
TAD instruction (for 2s complement ADD) simply performs a 2s complement
addition of the operand addressed in memory to the operand currently in the 12-
bit single accumulator and places the sum in this accumulator. There is an. extra
flip-flop called the link, or L, bit which receives any overflow from this addition.
The OP code for TAD is 0015, or lg.

Simitarly, the AND instruction simply performs a bit-by-bit AND on the
operand addressed in memory and the contents of the accumulator, placing the
result in the accumulator. The OP code for AND is 000,, or Oy.

The addressing techniques used in the 9 bits to form addresses have been
described. The eight bit in an instruction word is a 0 if the address is direct and a
1 if indirect (the address of the address). The seven bit is a 0 if the remaining 7
bits (bits 0 to 6) give the actual address on page O of the memory and a 1 if the
address is on the same page as the instruction word.

An ISZ (increment and skip if zero) instruction simply increments the word
addressed and returns it to memory. However, if this word becomes a 0, the next
instruction following the ISZ instruction is not executed. Instead, the computer
next executes the word in memory following this word. This particular instruction
is very useful in indexing through tables when indirect addressing is used and is
provided as a substitute for index registers. ‘

The DCA (deposit and clear accumulator) instruction stores the accumulator
in the memory at the address specified and also clears the accumulator to all Os.
The OP code for DCA is Ol11,, or 3,.

The JMS (jump to subroutine) instruction brings up an important feature in
instruction repertoires for computers. It is good form in writing a computer program
to break the program into as many subprograms (separable pieces) as possible.

Index register in the
6800 microprocessor.

473

|esaydisad yoea 01 snq
8y1 108UU0D 03 pasn si 0160 aoeylalu|

(an

Ja1sibaus mmw.ﬁnm‘
Asowap

§ 19151694 Jay4nq B
Alowap

L.Sm_mm:‘

: 101 nwing
il Uo1IoONUISU} el v

Ja1unod
weusbouyd

j011u09

o
£
-
©1%
s | e
(-]
S8
w s
c
2|
O
| o

6100 microprocessor.

474

NOP
CLA
CLL
CMA
CcML
RAR
RAL
RTR
RTL
IAC

BSW

BASIC INSTRUCTIONS

AND 0000 Logical AND

TAD 1000 2s complement add

1SZ 2000 Increment, and skip if zero
DCA 3000 Deposit and clear AC

JMS 4000 Jump to subroutine

JMP 5000 Jump

10T 6000 In/out transfer

OPR 7000 Operate

GROUP 1 OPERATE MICROINSTRUCTIONS

Sequence
7000 No operation -
7200 Ctear AC 1
7100 Clear link 1
7040 Complement AC 2
7020 Complement link 2
7010 Rotate AC and tink right one 4
7004 Rotate AC and link left one 4
7012 Rotate AC and link right two 4
7006 Rotate AC and link left two 4
7001 increment AC 3
7002 Swap bytes in AC 4

11 10 9 4 3 2
L b e T T

[,.?m‘ e L A ‘;» J " Fi

Indirect addressing—’
0= direct
1 = indirect
Memory page ma——————
0 = page 0

1 = current page
Memory Reference Instruction Bit Assignments

GROUP 2 OPERATE MICROINSTRUCTIONS

SMA 7500 Skip on minus AC

SZA 7440 Skip on zero AC

SPA 7510 Skip on plus AC

SNA 7450 Skip on nonzero AC

SNL 7420 Skip on nonzero link

SZL 7430 Skip on zero link

SKP 7410 Skip unconditionaily

OSR 7404 Inclusive OR, switch register with AC
HLT 7402 Halts the program

CLA 7600 Clear AC

Rotate AC and L right
Rotate AC and L left

Rotate 1 position if A @, 2 positions if A 1

Logical sequences

1 CLA,CLL

2 CMA, CML

3 IAC

4 RAR, RAL, RTR, RTL, BSW

Reverse skip sensing of bits 5, 6, 7~

Logical sequences
1 (Bit 8 is zero} Either SMA or SZA or SZA or SNL
1 (Bit8isone) Both SPA and SNA and SZL

2 CLA

3 OSR, HLT

INTERNAL 10T MICROINSTRUCTIONS
PROGRAM INTERRUPT AND FLAG (1.2 us)

SKON 6000
ION 6001
I0F 6002
SRQ 6003
GTF 6004
RTF 6005
SGT 6006
CAF 6007

Skip if interrupt ON, and turn OFF
Turn interrupt ON

Turn interrupt OFF

Skip on interruptrequest

Get interrupt flags

Restore interrupt flags

Skip on Greater Than flag

Clear al! flags

External device
Generates an |OP4 pulse if A 1

FIGURE 10.11

Instruction repertoire

Generates an |0P2 puise if A 1

for the 6100. (Harris

Semiconductor.)

Generates an |OP1 pulse if A 1

107 Instruction Bit Assignments

478

476

COMPUTER
ORGANIZATION

These subprograms or subroutines® are then jumped to whenever the function they
perform is required [refer to Fig. 10.12(a)].

The problem confronting the computer designer is that a given subprogram
can be jumped to from several different locations in the program. This is shown
in Fig. 10.12(b). For instance, in minicomputers and microcomputers no square
root instruction is provided. If many square roots are called for in a program, the
programmer writes a single square root subprogram (or subroutine), and whenever
the program must find a square root, a jump is made to this subprogram. After the
square root has been formed. the subprogram then causes a jump back to the
instruction following the JMS subprogram instruction in the original program sec-
tion. The subprogram is said to be called, and it exits by returning to the calling
program.

The problem is to arrange for a smooth jump to the called subprogram and
to make it easy for the subprogram to return to the original program. To implement
this, it is necessary to ‘‘plant’’ the address of the instruction to be returned to when
the subprogram is finished in some convenient place for the subprogram. Since the

_program counter (instruction counter) contains this address when the jump is made,

most computers provide a ‘‘jump to subroutine’’ instruction that will store the
program counter before the jump is made.

The JMS instruction in the 6100 operates as follows. The program counter
is stored at the address given in the address portion of the JMS instruction. The
computer then jumps to the next address in memory. That is, if we write JMS 505
(where 504 is the 50th location in memory) and if our instruction word is at 201
in the memory, then when the JMS 50; instruction is executed, the value 2025 will
be stored at location 50z in the memory, and the computer will actually jump to
or execute the word at location 514 next.’

Planting the program counter’s contents at location 505 in the above example
enables the writer of the subroutine to exit from the subprogram by placing a JMP
(jump) instruction at the end of the subprogram, using address 50g in the address
section but making the address an indirect address. Therefore, the computer will
actually jump to the address stored at location 504, which will be 202, and the
next instruction executed will be that at location 202;.

Notice that a subprogram set up in this way can be jumped to by a JMS and
exited by using a JMP indirectly from any place in memory, and the return will
always be correct.

The above scheme is a good one and has been used (with variations) in
several computers. But it has the problem that if a subprogram calls another sub-
program which calls the first subprogram, then the return address for the original
return will be wiped out. While this may seem unlikely, programs can become
very complicated, and this must be avoided. ‘

If a subprogram can call itself or can call another program which calls it
without damage, then the subprogram is said to be recursive.

A scheme whereby jumps to subprograms can be made so.that a subprogram
can call itself is given in a later section.

SWe use the words subroutine and subprogram to mean the same thing. Different manufacturers use
different words.
"DEC uses octal numbers almost exclusively in 6100 programming.

477
COMPUTER

SINGLE-ADDRESS
ORGANIZATION

(a) Calling a subpro-
gram. (b) The same
subprogram may be
called several times.
(c) How the 6100
handles subprogram
calls and returns.

FIGURE 10.12

()
"SIF 8yl buimoyjoy
u0110NJ1sul 3y} O} {0JIU0D
SUINIAJ YdIym uo1onisul
dwnl ssaippe 103.1pul ue Aq T
paixa s1 weaboidqns ay |

weuboidgng weiboid ulely

‘Asowawi
Ul sSaIppe 1xau ayl 0}
sdwnl uayy weaboud sy |
‘uo13ONJISUl SINT 3Yl
Ul SS3Jppe 8yl 1e patols s vse
| + 493unod weiboud ayy
‘pa1noaxa st ST Uaym

Lie
0Le

Alowaw Asowaw
ut uo11e207 ul uoIes’n

(9) (2)

weuboud

buijjeds o1 j03U0D
susmas weaboudgns
Ul UOIIDNJISUI 15E7]

Buimo||oy
uondNIIsuUl 3yl 0}
|0431U0D SUIMa3J
weaboadqgns ay |

Emhmohan:w

wesboidgng

weibosdgns sjjed
uonINAsul siy |

weibouia utey

478

COMPUTER
ORGANIZATION

The 6100 is bused, and input-output devices are connected to this bus. Input-
output in the 6100 is provided by the 10T (input-output transfer) instruction. The
input-output devices are each assigned a number from 0 to 28 — 1. When an IOT
instruction is given, the number in bits 3 to 8 of the 10T is placed on six wires in
the bus which each input-output device inputs to see whether it is being addressed.
The remaining 3 bits are also transmitted on the bus and tell the input-output device
what to do (read, write, rewind, etc.). The selected input-output device responds
to the bus signals generated by the 10T instruction, using logic circuits in its
interface to interpret the instruction and to place data on the data section of the
bus, read from it, etc.

The input-output devices are allowed to interrupt the processor and demand
service during program operation, by using the computer’s interrupt facility. The
ION (interrupt on) instruction raises a bus wire called ION to the input-output
devices, telling them it is their right to raise the INTERRUPT line on the bus and
demand service.

If an input-output device raises its INTERRUPT line while the computer is
operating a program, the address of the next instruction word which would normally
be executed is placed in location 0 in the memory, and the next instruction executed
is at location 1 in the memory. (This is generally a jump to the subprogram which
services input-output devices.) Since the address of the next instruction word in
the program which was interrupted is in location 0, the interrupt service program®

' can exit, using that address to return to the original program. This is shown in

Fig. 10.13.

Again, an interrupt of an interrupt will cause the original return address (at
0 in the memory) to be destroyed. The programmer must see that this does not
occur, and the right of devices to interrupt is revoked as soon as an interrupt occurs.
(The bus line for ION is lowered.) The program must issue another ION to restore
the interrupt privilege to input-output devices.

The 6100 has a number of features which have helped to make it attractive,
but which are outside the context of this description. For instance, since there is
only a single arithmetic instruction, TAD, it is necessary to complement an operand
and then add in order to subtract. To perform this complement and to provide
ROTATE or SHIFT instructions, some SKIP instructions, and some other logic
operations, the OP code 111 is a ‘‘no address’’ instruction class where the re-
maining 9 bits tell which of a number of different possible operations can be made
to occur.

Table 10.2 shows a section of an assembler listing® for a 6100. The leftmost
two columns (or digits) list the addresses in memory and their contents. The col-
“umns to the right of these were written by the programmer. The programmer fed
the assembler-language statements to the assembler program, which then generated
the complete listing shown here. All material to the right of the slashes is comments
and is ignored by the assenibler program.

The purpose of this subroutine, or subprogram, is tc read from a keyboard

$The program (or subprogram) which handles the peripheral that generates the interrupt is called an
interrupt service program.
°This listing is in octal. Each digit is an octal digit.

Address in

memory
205 If interrupt signal is given by peripheral device when this
206 instruction is being executed

The computer automatically places the address of the next
instruction which would have been executed in location O

in memory

The computer jumps to address 1 in the memory

After the interrupt has been serviced, a jump instruction
with indirect address O will cause a jump back to the
next instruction which would have been executec

479

SINGLE-ADDRESS
COMPUTER
ORGANIZATION

FIGURE 10.13

into the 6100’s accumulator. Another program enters this subprogram with a JMS
statement, which deposits the address of the next instruction to be operated when
the subroutine is completed in the first address of the subprogram. The address to
be returned to will be stored at location 251 in the memory when the subroutine
is entered, and the first statement executed will be the statement at location 252 in
the memory.

The statement at 252 in the memory is a KSF statement, which is a special
input statement that reads from the keyboard’s status register (see Chap. 7 for
details). If the status bit is a 1 in this register, the program skips over the next
instruction. As a result, when the KSF statement is executed, if there is a character
to be rexd from the keyboard, the next statement read will be at location 254. If
the stat word is all 2s, then the statement executed after the KSF will be the
JMP ins.uction at 253 in the memory.

TABLE 10.2 . 6100 SUBPROGRAM

ADDRESS CONTENTS LABEL OP CODE COMMENTS
9251 0000 LISN, ¢ /INPUT SUB
9252 6031 KSF

9253 5252 JMP #252

0254 6036 KRB

9255 5651 ' JMP | LISN

Interrupts in the 6100
microprocessor.

Flag register

Sign Zero Auxiliary arity Carry
carry

COMPUTER
ORGANIZATION
Pointer
toM
Program
counter

Stack
pointer
Interrupt enable
(a)
One-byte instructions
OP code
Two-byte instructions
Byte 1 OP code
] n+] Data or
Byte 2§ ‘¥4 address
Three-byte instructions
Byte 1} e 3] OP code
Byte 2 ’ % Data
or
1
Byte 3 ‘ﬁi address (b)

FIGURE 10.14

(@) 8080 CPU regis-

ters. () Instruction The 8080 CPU is basically a single-accumulator organization, but a number
word formats for

8080 CPU. of other scratchpad registers are provided, as illustrated in Fig. 10.14(a). The
instruction word formats are shown in Fig. 10.14(b), and a functional block dia-
gram of the 8080 is shown in Fig. 10.15.
The Intel 8080 has a good set of addressing modes (see Table 10.4). At the
beginning of each instruction cycle, the 8-bit OP code is read by the 8080 CPU.
and this determines how many more fetches from memory the CPU must make to

483

Aewie p
i91s16ay

A SINGLE-ADDRESS
MICROPROCESSOR

sNq ssaippy
Op-Sly

(91} yoie) ssauppe.

1383y z¢

- 181UBLIBIOBD /183LIR

.- 491unoo weibai
1) J9u n,oE ..ae

Jayuod yelg

xedning,

[

L9

AQV3d 47T0H MOV LNI
Livm a10H —

JINI NIgad 9m

FIGURE 10.15

AND -—

NG —

NG+ -—
ANCL + -

1snipe
jewdaq

block diagram. (/nte/

8080 CPU functional
Corp.)

salddns
1Moy

sNq elep |euJaju|
(Mag)

snq ejep
|euondasIplg

OthQ

snq e1ep |euidiu|
(1q g)

484

COMPUTER
ORGANIZATION

TABLE 10.4) ADDRESSING MODES FOR THE 8080 CPU

When multibyte numeric data are used, the data, like instructions, are stored in sy~
cessive memory locations, with the least significant byte first, followed by increasingly
significant bytes. The 8080 has four different modes for addressing data stored in
memory or in registers: s

1 Direct Bytes 2 and 3 of the instruction contain the exact memory address of
the data item {the low-order bits of the address are in byte 2, the high-order bits in

- byte 3). :) s ‘ A , -
& ﬂag:sm The instruction specifies the register or regi:tjér pair in which tmm
. are focated. - - : pds P i

'S Registarindirect “The instruction specifies a register pair that contains the memory
address where the data are located (high-order: bits of the address are in the first .
register of the pair, low-order bits In the second). -~ = ke
: ‘instruction contains the data. This is either 2 18 ore
nificarit byte first, most significant byte second). L

rnisas dirested by an INTERRUPT or'a BRANCH instruction, the e
NIH

procesgls through consecutively incréasing memory logs
{On can apacify: asddfe:softhanexginstmctiontabe 3

SRANCH instruction contains the address of the ¢
for the RST instruction, byte 2 containsithe
der address)) . -
The BRANCH instruction indicates:
instruction to be executed {high-order
he pair, low-order bits in the second].

execute the instruction. Some instructions require only the 8-bit OP code, while
others require 8-bit and some 16-bit addresses or operands, and so the CPU must
make the necessary accesses to perform the instruction.

Since 8 bits are used for the OP code, a large instruction repertoire has been
provided. A short list of the instructions used in examples is presented in Tables
10.5 and 10.6. Table 10.7 shows the complete instruction set.

The 8080 has conditional JUMP instructions which jump or do not jump,
depending on the values in the condition flags. These consist of five flip-flops (see
Table 10.8) which are set to 0 or 1 by the results of arithmetic instructions. For
instance, if an addition is performed and the result is O, then the Z flag will be set
to 1 and the S, P, and C flags to O (provided no carry was generated). A conditional
JUMP instruction which tests the Z flag for a 1 state would then cause a jump,
whereas a conditional JUMP instruction which tests the S, P, or C flags would not
cause a jump. (Refer to the BRANCH instructions in Table 10.6.)

In programming the 8080, considerable use is made of the scratchpad reg-
isters B, C, D, E, H, and L as well as accumulator A. In some instructions the
scratchpad registers are used in pairs. For instance, the INR M instruction, a
1-byte instruction, uses the two 8-bit registers H and L to form a 16-bit address.
The 8-bit number in the memory at this address is then incremented by the instruc-
tion. The Z, S, P, and AC flags are all set and reset by the instruction, so a 0 result
at that location will set the Z flag, a negative result will set the § flag, etc.

TABLE 10.5 NOTATION FOR 8080 CPU INSTRUCTION 485
REPERTOIRE LISTING IN TABLE 10.6

SYMBOL MEANING

Register A -
-16:bit address quantity
.8-bit data quantity
16-bit data quantity
- Second byte of the instruction
hird byte of the instruction
' ~a~*b& address of an input-output device. 4 Hea
. QOneoftheregisters 4, 8, C O, E H, L ~ A SINGLE-ADDRESS
~ Bit pattern designating one of the registers A, 8, G0, E H MICROPROCESSOR
{DDD = destination, SSS = source): ‘ ,
‘ " DDD or SSS Regfster Name
A

TABLE 10.6 INSTRUCTION REPERTOIRE FOR 8080 CPU

MOV 11, 12 {move register)
ie&rﬂ «—(r2)

. Content of regtster r2 is moved to register r1.

o‘v‘a‘o pls|sls

Addressing: register Flags: none
- MOV r,':Mv (move from memory)

iif) « ((HKLD)

j Cnmant of mamory location, whose address is in
regtsters H and L, is moved to register r.

olalolofolaT1Ty

Addrassing: register indirect - Flags: none
MOV M, r -(move to memory)
HAHUL) < r) .

Content of register r is moved to memory location

whose address is in registers 4 and L.

ol T 1]oTls]s s

Addressing: none
ADD r (add register)
(A) « (A} + (r)
Content of register r is added to content of accu-
mutator. Result is placed in accumulator.

register indirect Flags:

lolololols]sTs

Addressing:

ADD M {add memory)
AA) « {A) + {(HKLY) :
- Content of the memory Iocation, whose address is
.contained in registers H and L, is added to content
‘of accumulator. Result is placed in awumutator

register Flags: Z S, P, CY, AC

4:‘.110'0,0 0"'»1

e

Mdrewnq register%adimct
. Fags: 2,8, P CY, A¢

km fata (add tmmudlml ,
A} = (A) + (byte 2)

“\
1 ko

Content of second byts. mstmctim is added toh
eomm of mmmamr, Msun is placsd in aceu-

INR M (increment memory)

{(HXL)) « ((HXL) + 1
Content of the memory location, whose address is
contained in registers H and L is incremented by
1. Note: All condition flags except CY are affected.

OIO

0'011'1 0'1

Addressing: register indirect
Flags: Z, S P AC

LDA addr (load accumulator direct)

(A) « {{byte 3)(byte 2))
Content of memory location, whose address is
specified in byte 2 and byte 3 of instruction, is
moved to register A.

olola Tl aTol1To
Low-order addr
High-order addr
Addressing: direct Flags: none

STA addr (store accumulator direct)

((byte 3){byte 2)} — (A)
Content of accumulator is moved to memory lo-
cation whose address is specified in bytes 2 and 3
of instruction.

0’0]1‘]1 Ol01|0
Low-order
High-order addr
’ Addressing: direct - Flags: none

- SUB M- (subtract memory)
{A) (A} ~ {HILY)

. Content - of memory location, whose address is

contained in registers # and L, is subtracted from
‘content of aocumulatoc Resuit is placed in accu-
mn!mm

e o I-‘ olifols]1lo

Addtessmg registef indirect
Flags: Z 8, P, CY, AC

SUl data (subtram immiediate)
(A} « (A} — (byte 2)
Content of second byte of instruction is subtracted
from content of accumulator. Result is placed in
accumulator.,

TABLE 10.6

1l lela{ol s

Data

Addressing: immediate
Flags: Z, S, P, CY, AC

SBB r (subtract register with borrow)

(A) « (A) ~ (r) ~ (CY)}
Content of register r and content of CY flag are
both subtracted from accumulator. Result is placed -
in accumulator.)

’

1.0lol 1] 1Ts]sTls ~|o]0

Addressing: register Flags: Z S, £, CY, AC

CMP M (compare memory)

{A) ~ {{(HHL))-
Content of memory location, whose address is:
contained in registers # and L, is subtracted from
accumulator. Accumulator remains unchanged. .
Condition flags are set as a result of subtraction. = -
Z flag is set to 1 if (A) = {(H){L)). CY flag i is set to

1 (A) < ((HXLY.

lol1l1'1l1‘1“l,u

Cycles; 2 States: 7
Addmsmga register indirect.
Ftens & s, P, cY, Ac

mx (mmmem mgtstor
(rh)(rl) w(rhﬂﬂ) Ak EEE R
.- Content of register pair - is. mcremmcd by 1 :
Note: No condmcm flags are aﬁacted '

ofofn’P o T o

Cycles: 1 States: 5§ c
Addressing: register Flags:' anéf o

DCX rp “{decrement register paar)
{rh}rh) « (rh)(rl) < %
‘Content of register pair rp is decramented bsf

Note No cendmon flags are affected :

© Cycles: 1 States: 5
. Addressing: register

‘afe moved to memory focation ess is
“Tiese than ‘content of regmer SP ‘me ?ov%ovﬂer 8 i

TABLE 10.6

INSTRUCTlON REPERTOIRE FOR 8080 CPU (contmued)

“cation whm #ddress is 2 less than. oomnt of reg-
< igter 8P.-Content of register SP.is decrementad by
Lontrol Is transferred to instruction whose address

 High-order addr

- Addressing: immediate/register indirect
,Fiags: none . . L T

RET - (return) - ; i

APCL}« ({SP)) (PCH) « (ISP} + 1))

“{SP)« (SP) + 2
Content of memory location, whose address is speci-
fied in register SP, is moved to low-order 8 bits of

. register PC. Content of memory location, whose ad-
‘dress is 1 more than content of register SP, is moved

INSTRUCTION REPERTOIRE FOR 8080 CPU (contmued)

erP(;,;Contenkt‘ bf iag:ster kS of uond‘bon ﬂaq
) ‘ statuswor’d and

ol 1]

Flags: none ‘ ’

g ’PO
) e «sm: (th) l ?sm £ 1
" (SP) < (SP) + 2
: ebment of memory imaon, whose address is speci-
. 'fied by content of ragtstm' "SP, is moved to low-order
* ‘register of register pair p. Content of memory lo-
- cation, whase address is 1 more than content of reg-
ister SP, is moved to high-order register of register
- pair rp. Content of register SP is incremented by 2.
Note Regosxer pair rp = .SP may not be specified.

Itinie»_jofo o 1 1

: Addresstng:

regrster md:rect Flags: none

ntent ogfstelsSP:s dscrememad, i
irmp = SPmay notbespecc-
; POP Psw _{pop precessor status word)
{CY). « ({SP)), P}« {(SP))z {AC) « {(SP}},
{A) - {(SP .+ 1)}

> thew ls moved to memory locatvon " Addressing: registef indirect
i 1 less than register SP. Contents Flags: Z S, P, CY, AC

Parentheses are used to indicate ‘‘the contents of”’ in Tables 10.5 and 10.6.
For example, the notation (H) <> (D) used in the XCHG instruction means, “The
contents of register H and register D are-exchanged.” Similarly, ((HXL)) « (byte
2) in the description of the MVI instruction means, **The contents of byte 2 of the
instruction word are transferred into the location in memory whose address is
formed by writing the contents of register H to the left of the contents of register
L.” This notation is widely used and worth examining in some detail.

Table 10.9 shows an 8080 program in assembly language and a listing of the
hexadecimal values for memory location and contents as generated by the assem-
bler. The programmer wrote the columns: Label, OP Code, Operand, and Com-
ments. The assembler generated the two leftmost columns.

490 TABLE 10.7 8080 INSTRUCTION REPERTOIRE

N INSTRUCTION CODEt
MNEMONIC DESCRIPTION D, Dy Dy D, D, D, D, D,
.MOV.r1, 12 Move register to register 0 1 D DD S S's
I MOVM, r Move register to memory 0 1 1 1 0 S § S
MOV r, M Move memory to register 0 1 DDD 1 1 o0
HLT Halt) o 1 1 1 0 1 1 0
MVir Move immediate register 0 0 D DD 1 1 0
“MVEM Move immediate memory 0 0 1 1 0 1T 1 0
INRr Increment register 0 0 D DD 1 0 0
COMPUTER DCRr Decrement register 0 0 D DD 1 0 1
ORGANIZATION INR M Increment memory 00 1 1 0 1 0 0
DCRM Decrement memory 0 0 1 1 0 1 0 1
ADD r Add register to A 1 0 6 0 0 S S S
ADCr Add register to A with carry t 0 0 0 1 8 s S
SUBr Subtract register from A 1.0 0 1t 0 8 s s
SBBr Subtract register from A with 1t 6 0 1 1 8 s s
borrow :
ANA r AND register with 4 1t 01 0 0 S S §°
XRAr Exclusive-OR register with A t 0 1 0 1 8 8§ 8§
ORAr OR register with A 1 0 1 1 0 S8 § 8§
CMPr Compare register with A 1 0 1 1 1 8 8§ 8-
ADD M Add memory to A 1 0 0 0 0 1t 1 0
ADC M Add memory to A with carry 10 0 0 1. 11 o0
sus M Subtract memory from 4 1t 0 0 1 & "1 v 0
SBB M Subtract memory from A with 10 0 11 1 1 0
borrow
- ANA M AND memory with 4 t 0 1 0 0 1t 1 o
‘XRA M Exclusive-OR memory with A Tt 0 1t 0 1T-1 1 0
ORA M OR memory with A T 0 1T T8 1T 10
CMP M Compare memory with A 10 1. 1 e T T
CADE - Add immediate to A 1 1 0.0 3
“ACH .. - Add immediate to A with carry 1 1 0 -0 .
- Subtract immediate from A 1 1 0 1
_'Subtract immediate fromAwith 1 1 0 1

: . AND immediate with 4 T 1 1 0.
XRl . Exclusive-OR immediatewith4 1 1 1 ¢ -1
. ORt OR immediate with A 1 1.1 10
CPi Compare immediate with A 1.1 1 1 %,
ALC " Rotate A left 0 0 0 0 O
RRC " Rotate A4 right 0 0 0 0 1
RAL Rotate 4 left through carry ¢ 0 0 1.0 1
RAR Rotate A right through carry 0.0 0 1 v oty
JMP Jump unconditional 11 0 0 0 0 1 1
JC “Jump on carry 11 0 1 1 0 1 0
JNC Jump on no carry Tt 1 0 1 0 0.1 0O
Wz - Jump on zero 11T 0 0 1u0T0
-JINZ Jump.on no zero T 1.0 0 0 0.1 .0
“JP ' Jump on positive 11 1 1 06 01 o0
IME Jump on minus 11 %+ 11 0 1 0
JPE Jump on parity even 1 1 0.1 0.1 0
JPO Jump on parity odd T 1 1 0 0 0 1 0
‘CALL Call unconditional t 1. 0 0 1t 1 0 1
CC Call on carry 1T 1 0 vt 11 090
CNC . Cali-on no carry: T 1 0 1 01 0 0
cz Call on zero 1 0 0 1 1 0 0
"ENZ Call on no zero 1 0 0 0 1 0 0
CP-:. . """ Call on positive T 1t 11 ¢ 100
™M . .Call on minus 1T 1 1 1 1+ v 000
CPE Call on parity even A 11 0.1 1T 0 0
CPO Call on parity odd 1 1 1 0 0 1 0 o 'j

3

TABLE 10.7 8080 INSTRUCTION REPERTOIRE (continued) 491

INSTRUCTION CODE*
MNEMONIC DESCRIPTION D, Dy D, D, D, D, D, D,

Return o ; , i
Return on carry TEEE 8
Return on.no carry E
Returnonzero 1

A SINGLE-ADDRESS
MICROPROCESSOR

incrarn ' L regi
Increment stack pai
Decrement5,C =~
‘DecrerhentD, £ 1t T
Decrement H, L

De

" Enable intertupt . T
Disaple interrupt, .
Nooperation ~ ~~ ~ “ 00 0 0 0

Ll P

Note: DDD or SSS is numbered as follows: 000, B; 001, C; 010, D; 011, E; 100, H; 101, L; 110, memory;
111, A. For example, 01010007 instructs the computer to move the contents of register C into
register D.

492

TABLE 10.8 FLAGS USED IN 8080 CPU

The purpose of the program is to find the larger of two 8-bit numbers in
locations 50 and 51 in the memory and to store this number at location 52.

The first instruction, LXI H, SOH, loads 50,4 into registers H and L. When
the 8080 assembler is used, writing an H to the right of a number means the number
is hexadecimal. Therefore 50H means 01010000,, or 50, to the assembler. So
LXI loads 00000000 into register H and 01010000 into register L. (Notice that the
least significant byte is first in the memory in an instruction word in the 8080.)

The MOV A, M instruction'' moves the byte in the memory pointed to by
the address in registers H and L into accumulator A. Since H and L point to location
50, the byte at that location will be moved into the accumulator.

The INX H instruction adds 1 to the register pair H, L, giving S1 in H
and L.

The CMP M instruction compares the byte in the memory pointed to by the
H, L pair with the contents of accumulator A and sets the status flags accordingly.
In effect, the flags are set as if the byte in memory had been subtracted from
accumulator A. However, neither memory nor accumulator is changed. As a result,
if the byte in the memory equals that in A, the Z bit will be set to 1; if A is less
than the byte in the memory, the C flag will be set to 1.

The JNC FINIS instruction causes a jump to FINIS if the C flag is a 0. (In
this case the content of A is larger than or equal to that in location 51 in the

""M is used in assembler language to indicate the byte in the memory pointed to by the H, L pair of
registers. These must have been properly set before such an instruction is used.

TABLE 109 8080 PROGRAM TO FIND LARGEST NUMBER

MEMORY
ADDRESS CONTENTS LABEL OP CODE OPERAND COMMENTS

memory.) If no jump is taken, the MOV A, M instruction moves the byte at location
51 (now pointed to by H, L) into the accumnulator.

The INX H instruction adds 1 to the H, L register pair, giving 52, and the
MOV M, A instruction moves the contents of the accumulator into location 52 in
the memory.

This computer employs what is now becoming the most used technique for
subroutine calls and for servicing interrupts. For a subroutine jump a CALL in-
struction is used. The address of the subroutine is in the 16 bits (two memory
addresses) following the CALL OP code. This instruction first increments the
program counter to the address of the next instruction in sequence and then places
(pushes) the contents of the program counter on a stack in the memory. The stack
pointer (see Fig. 10.16) is adjusted to point to this address on the stack. The jump
to the subroutine is then made.

At the end of the subroutine a RETURN instruction is used. This instruction
specifies no address but simply causes a return to the address currently on top of
the stack and then pops this address.

An investigation of this scheme will show that if a subroutine calls another
subroutine which calls another subroutine which then calls the first subroutine, the
successive addresses needed are stacked one on the other, and the subprograms
will finally work their way back to the original calling program without loss of any
of the necessary address links.

In preparing subroutines, some method must be agreed on for *‘passing pa-
rameters’’ into the subroutine. For example, if the subroutine’s function is to find
the square root of a number, then the original number must be passed to the
subroutine, and the square root calculated by the subroutine must be passed back
to the calling program. In this case the accumulator is a logical place to use for
passing the number involved. Then each time the subroutine is to be used, the
number whose square root is to be formed will be placed in the accumulator, the
subroutine will be called, and at the end of the subroutine the square root will be
in the accumulator.

In this computer interrupts are handled in a way similar to subroutine calls.
The program being executed is interrupted, and the address of the next instruction
which was to be executed is placed on top of the stack maintained by the stack 493

494 Address in memory For the 8080 CPU

If peripheral device issues an interrupt

205 while this instruction is being executed

206 Next instruction to be executed in

normal sequence

TThe interface circuitry must also
generate an RST-instruction OP
COMPUTER : code on the data lines during the

ORGANIZATION l Then next cycle

Stack pointer

CPN places the address of the next
344 B instruction which would have been
I executed on top of the stack
Note: This address is actually
stored in two consecutive.,
addresses in memory ’

' And then

The next instruction executed is at an
address chosen by the peripheral device

!Finally

An RET instruction at the end of the
peripheral service program will cause
a jump to the address on top of the
stack, which will be address 206 in
this case. The stack pointer will be
incremented by 2 “popping” this
address

FIGURE 10.16

Interrupt servicing
using a stack.

pointer. The interrupting device places an RST instruction on the data lines of the
bus, and the 8080 next performs this instruction. The address section (NNN in
Table 10.6) of this instruction contains the address in memory where the subroutine
to service the interrupt is located. Returns from the interrupt servicing subroutine
can then use the RETURN instruction to return to the original program. This is
shown in Fig. 10.16.

When this kind of stacking of subprogram and interrupt addresses is used, it
is possible to have subroutines interrupted, interrupts interrupted, and so on, and
still return to each strip of instructions correctly as long as the stack does not
overflow the area in memory allocated for it.

It is also necessary to save the registers in the CPU when interrupts occur if
they are changed by the interrupt servicing subroutine. (The same applies for
subroutine calls.) The interrupt program must take care of this saving and restoring
of registers. Some idea of how this is done by using a stack can be gathered by
examining the PUSH and POP instructions, and the Questions treat this in more
detail.

We now examine a program using a subroutine call. The subroutine is to
search a table for a specific character. If the character is found, the position of the
character in the table is to be passed back to the calling routine.

Examination of the problem indicates that the following information must be
passed to the subroutine: the location of the table in the memory, the length of the
table (number of characters in the table), and the character to be searched for. To
pass these three parameters, we choose registers H and L to point to the ending
location of the table, put the number of characters into register B, and place the
character to be searched for in the accumulator. The subroutine is then entered; its
job is to find the character, place its position in the table in register B, and then
return to the calling program. If the character is not in the table, B is made a 0.

A subroutine to perform this function is shown in Table 10.10. When the
subroutine is entered, the register pair H, L points to the table’s last location in
memory, B gives the number of characters, and A contains the character to be
located.

The name of the subroutine is SRCH. The ORG 30H statement, which occurs
first, is an assembler directive which tells the assembler to *‘locate this subroutine
beginning at location 30,, in memory."’

The label SRCH identifies the subroutine. The CMP M instruction compares
the last entry in the table (which is pointed to by the H, L pair) with the accu-

TABLE 10.10 A SEARCH SUBROUTINE

LABEL OP CODE OPERAND COMMENTS
: "ORG 30H
SRCH CMP M ;18 CHAR maw Emv;
4 FINIS ; YES
- DEX H ; GO'TO NEXT ENTRY
R B . ; DECREMENT B
J : " SRCH : IS SEARCH OVER? ‘
FINIS RET- , R ;RETURN ©

A SINGLE-ADDRESS
MICROPROCESSOR

496

COMPUTER
ORGANIZATION

TABLE 10.11 CALLING PROGRAM FOR SEARCH SUBROUTINE

LABEL OP CODE OPERAND COMMENTS

e L e ﬂ.m@” Hlﬁﬂﬁ ‘f«-b’a‘ oD /;ﬂ ESS
AL MMEE L BL0M T L OAD NG, OF CHARS -
| CHAR ; LOAD CHARACTER

mulator. If they are equal, the Z status flag will be set, and the JZ instruction will
cause a jump to FINIS. If they are not equal, the DCX H instruction subtracts 1
from the H, L pair, and then the DCR B subtracts | from B. When the DCR B
instruction is executed, if B becomes 0, the Z flag will be set. The JNZ instruction
tests this, and if another location is to be checked, it jumps back to SRCH; other-
wise, the subroutine ends.

A possible calling sequence is shown in Table 10.11. The location of the
end of the table is at TBEND in the memory, and the number of items is 2046
These are loaded into the H, L pair and B, and the character to be searched for,
here called CHAR, is loaded into the accumulator. Finally the subroutine is entered,
by using a CALL SRCH instruction.

When the RET instruction in the subroutine is executed, the return will be
to the LDR 40H instruction, which would be executed next. (This statement is
placed in the program only for completeness and does not affect any operation
discussed.)

6800 MICROPROCESSOR

10.12 Another widely used example of a microcomputer is the 6800 micro-
processor-microcomputer system first developed by Motorola. (Chips for this sys-
tem are also available from a number of other manufacturers.) The basic CPU is
on a single 40-pin IC chip, as shown in Fig. 10.17. The 6800 has an 8-bit data
bus and a 16-bit address bus (see Fig. 10.17). From a programming viewpoint,
the CPU chip contains six basic registers, shown in Fig. 10.18.

Accumulator A This is an 8-bit accumulator.
Accumulator B This is an 8-bit accumulator.

1

2

3 Index register This is a single 16-bit index register.

4 Stack pointer This is a 16-bit register which points to a stack in memory.
5

Program counter This is the instruction counter or program counter ard
contains 16 bits.

6 Status register This is a 6-bit register containing six flip-flops, H, I, N, 7,
V, and C. The results of arithmetic and other operations are stored in these bits.

The instruction repertoire for this CPU chip includes over 100 different in-
structions. The operation code is 8 bits, the size of a word in memory. There are

~ ox
] 0 W.m
% w93
w ~N|CES
Q - £ o
Q . aOM
@ ol FS=
a - o%
(o] w 9 [*]
& €| 558
o D[x<g3
= ©@| 82385
- — ™
E|lmasSac

00 ld ¢d ed vd Sd 90 (d

©@®® EEOE@ uoesqun oo oo

6 allim/peay

@ SS2UPPY AJOWB PilEA
@ alge|ieAy sng

@ a|qeu3 sng eleq
@ 011U0)) 31e1S-98.Y |

@ 1sanbay 1dnuiaiu|
@)~ en

1dn4slu| 8|geysewuoN

9 1asay

@ 2942019
(®) " 1o wo0d

'S11q J13P10-MO|
sueaw T pue siiq JapJo-ybiy
sueaw g ‘s}iq g ate s1ais1bas ||y

@)
Ly

:®
@
®
®

o
<
<
N
<
«
<
s
<
[Te}
<

498

COMPUTER
ORGANIZATION

FIGURE 10.18

Accumulator A
Accumulator B

““ 1 Index register

Stack pointer

fx] Condition codes
Y register

Carry {from bit 7)
Overflow

Zero

Negative

Interrupt

Half carry (from bit 3)

Basic registers used
in programming the
6800.

seven different addressing modes, which are described in Table 10.12. A list of
the instructions for this microprocessor chip is shown in Tables 10.13 to 10.15.

The way that conditional branch instructions operate deserves mention. When
an arithmetic or boolean operation is performed, the status bits are set according
to the result of this operation. Tables 10.16 and 10.17 show the status bits and
detail their function. The BRANCH instructions use the values of these bits to
determine whether a branch is to be made.

For instance. let us assume accumulator A is added to accumulator B. Then
if the sum is negative. the N bit will be set to a 1. We also assume no overflow,
so V will be set to a 0. Now if a BLT (branch if less than 0) instruction follows,
the computer will branch to the address given in the address part of the instruction.
If the result of the addition had been 0 or positive. no branch would have o:curred.,
and the next instruction in sequence would be taken.

The interrupi mask bir (1)-in the status register is set on when external input-
output devices are allowed to interrupt the computer. When an interrupt occurs.
the computer jumps to an interrupt servicing routine (program) which is stored in
the memory. To simplify and shorten the interrupt servicing program. this micro-
processor automatically transfers the values in all the CPU registers into a stack in
the memory and places the address of these stored register contents in the stack
pointer. The interrupt servicing program can then simply service the printer reader,
or whatever generated the interrupt and can later return the contents of the CPU

TABLE 10.12 ADDRESSING MODES FOR MICROPROCESSOR 499
OPERATION

: m mmutator-only addmsmng. emer : !
accumulator B is speciﬁed These are «im: !

immediate addressing, the o
 of instruction, WL&W

6800
MICROPROCESSOR

registers to their status when interrupted and restart the program where it was
interrupted.

Maintaining these stored registers in a stack also enables the interrupt ser-
vicing program to be interrupted, since the contents of the registers are again placed
in the stack. In this way several interrupts can follow one another, and the program
can still service each interrupt in turn and then return to the original program,
which was operating when the first interrupt occurred.

Details of the operating features of this microprocessor can be found in the
manufacturers’ manuals listed in the Bibliography.

Table 10.18 shows a short program for the 6800 microprocessor. Its purpose
15 to add a table of 8-bit bytes located in the memory starting at address 51,4. The
number of bytes in the table is in location 50,¢. The sum of the numbers is to be
stored at location OF in the memory. Carries from the addition are ignored.

12

20ZcnZ<a
888<m«Eam 88!

S<ms
TTT

8
£
,‘,,xv,

pE3 11
+++35SS

g CnLHCD

<

a8
viig
gaNvy

v “wnipe jpwiveq
-~ (ewbau)
sZ Wawejdwo)
| Juewe|diio)
s101e{NWiNooe asedwo)

siedwo)

jes|)
; ‘ 1sa)ug
ST B puy
s ?.:mo %bvd

sioginw

{SLN3LNOD Ol H343H S138V1 431SI93Y TIV)
+NOILVH3dO JILIWHLIMY NVvI1008

d0 dO d0 d0 d0

Q3NdNI GNIX3 X3ANI 103Hia a3InwnI

*SNOILONYLSNI AHOWIW ANV HOLVINWNDDY

S3AOW ONISS3IHaavy

OINOW3INW

SNOILVYH3dO

€101 3719Vl

500

